Model Checking Requirements
at Run-time in Adaptive Systems

Prof. Paola Inverardi
Universita dell’Aquila — Dip. di Informatica

Phd student; Marco Mori
IMT Institute for Advanced Studies Lucca

ASAS 2011 Workshop on Assurance for Self-Adaptive Systems

Outline

The Approach
Motivating Scenario
Assurance Framework
Evolution and Execution Formalization

Assurance Process
Example: Assurance Process

Conclusion

Introduction

In the ubiquitous environment applications are
sensitive to the external conditions

Self-adaptive systems aim at adjust various
artifacts or attributes in response to changes in the
self and in the context of a software system
Self is the whole body of software, mostly implemented
In several layers (e.g. new requirements)

Context is everything in the operating environment that
affects the system properties and its behavior

System Evolution

Software engineer defines a set of system
alternatives at design-time (having in mind the
possible contexts)....

... But new unforeseen contexts may appear at run-
time (New resources, new values for old resources,
etc...)

The user may specify a new requirements which
represents his new need In the unforeseen context

At run-time the set of system alternatives may have
to be augmented to satisfy the new requirement

High-assurance

To prevent the system incorrect behavior the evolution
has to be supported by validation mechanisms

At design time: we have to validate the known system
alternatives

At run-time: we have to validate new system alternatives

Considering actual system model (code) can better
prevent the system incorrect behavior than considering
high-level models

The Approach

]
Predictable Design-time
Context Variations
calls for supported by

Evolution

Validation

based on

Requirements
specifications

Implementation
artifacts

-

The Approach

]
Unpredictable Run-time
Context Variations
calls for supported by

New Requirement

Evolution

Validation

based on

Requirements
specifications

Implementation
artifacts

—

Run-time High-Assurance

A new definition:

“High-assurance provides evidence that the system satisfies

continuously its functional or non-functional requirements thus
maintaining the user’s expectations despite predictable and
unpredictable context variations”

Unpredictable context variation

!

New requirements at run-time

!

Run-time assurance techniques for a perpetual
assessment of un-anticipated evolutions

Run-time High-Assurance

In the literature there are many attempts of
evaluating high-assurance at design-time for
adaptive systems

Discovering miss-behaving requirements

Model checking alternative behaviors
Almost, no support for run-time high-assurance
activities over run-time evolved requirements

Run-time model checker for evolving probabilistic
models

No support for run-time high-assurance of actual
(code) system models

Motivating Scenario

E-Health distributed application to monitor vital parameters
belonging to elderly people

Probes sense patient information whereas the home gateway
transmit them to the hospital

Doctors visualize the trends of pulse oximetry and heart rate
through PDA and desktop devices

Adaptive behavior:

Set of system alternatives to visualize the vital parameters at the
doctor’s device as textual or graphical representation (possibly real-
time)
Each alternative

has a different requirements specification

consume a certain amount of resources to be provided by the environment (e.g.
memory, CPU, etc...)

E-Health Architecture

Monitoring System
(Probes)

Residential
Geateway (Patient)

=

=
Adaptive Application
(Doctor)

Server

Assurance Framework

Supports the consistent evolution of adaptive
applications starting from the requirement level

Supports design-time and run-time evolutions

System variability can be expressed following the
Software Product Line Engineering perspective
(SPLE)

Supports a formal definition of high-assurance

Evolution Taxonomy (1/2)
T =

Requirement

variability
Rk
Unforeseen
System Evolution
R2

Foreseen System Evolution

| —)

C1 cC2 Cz Context Variability

Evolution Taxonomy (2/2)

Foreseen Evolution:

foreseen context variations =====> among statically
analyzed system alternatives the framework choose the
most suitable

Unforeseen Evolution:

unforeseen context variation === switching towards
an un-anticipated system alternative which satisfies a new
requirement (@ run-time)

Requirements Taxonomy

A concern Is a matter of interest in a system

The requirement taxonomy is created by the
taxonomy of concerns:

(I) Functional requirements === functional concerns

(i) Performance requirements ==) performance
concerns

(i) Quality requirements ==) quality concerns
Constraint requirements restrict the solution space of
meeting (i), (i), (ii)

System Notation (1/2)

System variability can be expressed following the Software Product
Line Engineering perspective (SPLE)

The single unit, the so called feature, represents the smaller part of a
service that can be perceived by a user

Features are combined into configurations in order to produce the
space of system alternatives

Inspired by the SPLE we adopt the notion of feature interaction
phenomenon as our notion of high-assurance

A system configuration shows a feature interaction phenomena if its
features run correctly in isolation but they give rise to undesired
behavior when jointly executed

System Notation (2/2)

System is a set of unit of behavior defined as triple (R,I,C)
where:

R is a functional, performance or quality requirement (context
independent)

| is the code implementation (e.g. Java)
C: constraint requirement (context dependent)

A configuration G, =(R.,1.,C.) is obtained by combining a subset
of features F

We assume to have an abstract union operator to combine features,
which is expressed in terms of union operator for R, | and C

Given two features fi =(R..1..C.) and f, =(R,.1,,C,) their union is
defined as:

f1Uf f2 :(R1UR R, I1U| |2’C1Uc Cz)

Example: Feature

R jashoxyeen = | (GraphOxViewer ViewGraphOx(Graph)) —

(<> GraphOxViewer.outcome)
|

graphOxygen

public class GraphOxViewer{

public void viewGraphOx (Graph g) throws Except ion {

Annotation.resources ("mem(50) , CPUClockRate (1000)™);

for (int i = 0; i<10; i++){
XYDataltem dataOx = OximetryRetr.getOximetryData();
dataVectOx .add (dataOx);

}

g.DisplayGraph (dataVectOx);

outcome = Checker.Check(g.currData, dataVectOx);

if (loutcome) { throw propertViolation;}

b}
C raphoxygen = MemM =50 A CPUClockRate >1000Khz A oxygenationProbe = true

Evolution and Execution

The systems move state by state o=<o..0..0,>

o, is the internal state portion managed by | which does not affect
any of the evolution scenarios

o, Is the portion of external state which addresses the foreseen
evolution. It represents the current context state

o, IS the portion of external state which addresses the unforeseen
evolution. It may contains either a new requirement <R,,,.+> arising from
the user or a requirement to delete <R,,,—> .

Whenever no unforeseen evolution is required this portion of
state is empty o, =0

We assume that a monitor exists that runs in parallel with the
System monitor (o)

Evolution and Execution
I =

@nfﬂreﬁ&&n Evalutinrﬁ (EZXE?CHHf) o
G: oreseen Evulutiur?‘/ =
(exec,)
(System ExecutiurD
IG; > [GHI) -~ IGHIc
evec) v {
(EIQCTZ) IGr‘ >]Gm . > IGH.&

Voo

Vv IGE: > I(z}nl * > I{FH&

Execution
I

monitor(o.) = false

f{a" T 0>
I‘fﬂrs:gﬂ:ﬂ'e} el I s? 3
- erecri L3}

T

F o=

i

EXe ;
/
CTl (I'Gi! <U_SJUC¢U-E >>_>E.T.€,CT1 (IGz"‘ <U-S;G'c-,»ﬂ'e :})
monitor(o.) = false
<O g,0¢0,0¢ > 1< ,ﬂr'r,.-.:r >
IG:S e _'_:’Emech IG'L PARREs Te — @
EXe
G,

(IG“ < 0s,0¢,0e > > ‘_}Emech (Iéi’ il JS,J::,JE >>

Foreseen Evolution
I

monitor(o.) =< true, o/ >

!
<O 5,0¢,0¢> <05,0,:,0¢> s U :

EXEC f

(IG’?;; < Os5,0¢c,0¢ o) _>€:B€Cf (Ing L O'S;O-éyo'e >>

Unforeseen Evolution
I

monitor(o.) = false % Bl & 26 e
SearchEngine(Rnew) = f Verify(G;) = true

s o ¢ el e <O05,0¢,9> o s 1
IG*E. _‘_}Eﬂ"“ecuﬂ_f IGJ Gj = Gz Uf f

EXEC

unf

<J_rGi1 < O0s5,0¢,0¢ :;"> _}E‘I’Eﬂunf (IGj? < D'S?G'C!ﬁ >>

Assurance Process (1/3)

Given a running configuration G. =(R., I,C.)and a new
feature fy., =(Ruye ! news Criew) |mplement|ng the new
requirement, we have identified three notions of correctness:
() ReUiRy, :Jjoint requirement satisfiability
() (c.U CNeW)EC /x| . Joint context requirement validity in the
current contex state
(i 1.U 1., R-Us Ry, -Jointimplementation satisfies the joint
requirement"
We focus on check (iif) which checks the inconsistency at
Implementation level

Assurance Process (2/3)

Given a running configuration G. =(R.,I.,C.)and a new
feature fy., =Ry newr Criow) |mplement|ng the new
requirement, we have identified three notions of correctness:

() ReUiRy, :Jjoint requirement satisfiability

(i) (c.u CNeW)Ec /x] :joint context requirement validity in the
current context state

() .U, 1.+ ReUg Ry, -Jointimplementation satisfies the joint
requwemen‘i

We focus on check (iif) which checks the inconsistency at
Implementation level

LTL requirements as R and Java code as |

Assurance Process (3/3)

We exploit the Java Path Finder (JPF) tool In
order to validates requirements R with respect to
Java classes |.

We have implemented a procedure to check the
satisfaction of R

If the result of this check is negative an exception is
thrown

JPF checks If at least a path of execution generates un-
nandled exceptions

f the exception is not thrown in any of the execution
paths the property is satisfied

Example: Assurance Process

A certain configuration G is running at the doctor device to visualize the
oxygenation data graphically

A new sensor to detect the respiratory rate is added to the system as a new
UPnP device

The doctor is notified of the new probe, as a consequence he specifies a
new requirement:

R= “Receive and view the respiratory rate data”

Example: Assurance Process

A certain configuration G is running at the doctor device to visualize the
oxygenation data graphically

A new sensor to detect the respiratory rate is added to the system as a new
UPnP device

The doctor is notified of the new probe, as a consequence he specifies a
new requirement:

R= “Receive and view the respiratory rate data”

Two different features are proposed each one implementing R with a
different visualization modality:

[|[GraphRespRViewer.viewGraphRespR(Graph)—<> GraphRespRViewer.outcome
[JGraphRespRViewer.viewTextRespRate(Text)— <> TextRespRViewer.outcome

Example: New Feature

RgrathespRatc —
— [[(GraphRespRV iewer.viewGraph RespR(Graph) —
(<> GraphRespRViewer.outcome))

Ig?‘athe.spRate :

public class GraphRespRViewer {

boolean outcome=false ;

private static Exception propertyViolation;

for(int | = 0i <10; i4+4

XYDataltem dataRespR = RespRRetr.getRespRData();
dataVectRespR .add(dataRespR);}
g.displayGraph(dataVectRespR);

outcome = Checker Check(g.currData ., dataVectRespR):
if (loutcome){throw propertyViolation;}}...}

After the invocation of the method “viewGraphRespR” the function

“Check” attests that the graphical widget contain exactly the
retrieved data

Exploiting Java Path Finder we check if at least a path of
execution leads to the un-handled exception “propertyViolation”

Example:

Consistency Check

- Model checking the
augmented requirement
w.r.t. the augmented

Implementation

U, I,
|_
R, U, R

raphRe spRate

graph Re spRate

HL’}N.:LU == Rgrﬂph@‘mygcn Up Rgraphﬁaspﬂatc Ug ... =
{(GraphOzViewer.viewGraphOz(Graph) —

(<> GraphOzViewer.outcome))A
(GraphRespRViewer.viewGraphRespR(Graph) —
(<> GraphHespRV iewer.outcome))) Ug ...

I('}'Ncw = Ig'r'aphf);rygcn Uy I_I?‘i"‘ﬂ"ph RHezpRate Uy ... =
public class VariantGNew{

static Graph myGraphViewer;

public static void Execute() throws Exception{
myGraphViewer = new Graph();

GraphOxViewer graphOx =new GraphOxViewer/();
GraphRespRViewer graphRr = new GraphRespRViewer();

graphRr.viewGraphRespR(myGraphViewer });

bood

public class GraphOxViewer{

bocolean ocutcome=false;

private static Exception propertyViolation;

public void viewGraphOx(Graph g) throws Exception/{
for(int i = 0;i<10;i++){

XYDataltem dataOx = OximetryRetr.getOximetryData();
dataVectOx . add(dataOx);}

g.displayGraph (dataVectOx);

outcome = Checker Check(g. currData, dataVectOx);

if (!outcome){throw propertyViolation;}}...}

public class GraphRespRViewer {

bocolean ocutcome=false;
private static Exception propertyViolation;

ﬁh-hlic void viewGraphRespR(Graph g) throws Exception{

for(int i = 0;i<10;i++){

XY Dataltem dataRespR = RespRRetr.getRespRData ();
dataVectRespR.add(dataRespR);}
g.displayGraph(dataVectRespR });

outcome = Checker.Check(g.currData, dataVectRespR);
if (!outcome){throw propertyViolation;}}...}}

Example:

Consistency Check

- Model checking the
augmented requirement
w.r.t. the augmented

Implementation

U, I,
|_
R, U, R

raphRe spRate

graph Re spRate

HL’}N.:LU == Rgrﬂph@‘mygcn Up Rgraphﬁaspﬂatc Ug ... =
{(GraphOzViewer.viewGraphOz(Graph) —

(<> GraphOzViewer.outcome))A
(GraphRespRViewer.viewGraphRespR(Graph) —
(<> GraphHespRV iewer.outcome))) Ug ...

I('}'Ncw = Ig'r'aphf);rygcn Uy I_I?‘i"‘ﬂ"ph RHezpRate Uy ... =
public class VariantGNew{

static Graph myGraphViewer;

public static void Execute() throws Exception{
myGraphViewer = new Graph();

GraphOxViewer graphOx =new GraphOxViewer/();
GraphRespRViewer graphRr = new GraphRespRViewer();

graphRr.viewGraphRespR(myGraphViewer });

bood

public class GraphOxViewer{
bocolean ocutcome=false;
private static Exception propertyViolation;

public void viewGraphOx(Graph g) throws Exception{
for(int i = 0;i<10;i++){

XYDataltem dataOx = OximetryRetr.getOximetryData();
dataVectOx . add(dataOx);}

g.displayGraph (dataVectOx);

outcome = Checker Check(g. currData, dataVectOx);
if (!outcome){throw propertyViolation;}}...}

public class GraphRespRViewer {

bocolean ocutcome=false;

private static Exception propertyViolation;

ﬁh-hlic void viewGraphRespR(Graph g) throws Exception{

for(int i = 0;i<10;i++){

XY Dataltem dataRespR = RespRRetr.getRespRData ();
dataVectRespR.add(dataRespR);}
g.displayGraph(dataVectRespR });

outcome = Checker.Check(g.currData, dataVectRespR);

if (!outcome){throw propertyViolation;}}...}}

Example: Consistency check

Java Path Finder finds out a un-handled exception
which is thrown by the “viewGraphRespR” method

The graph does not contain exactly the data

belonging to the respiratory rate but also the data
belonging to the oxygenation

| £ eHealth System @Eléj

Vital Paraters' trends

Conclusion

We have devised an automatic procedure to check high-
assurance at run-time with JPF
Pros

Automatic check to prevent the system from adopting incorrect
(in-consistent) behavior

Consistency checks performed over actual system model (Java
code)

cons

To check: scalability and performances of the run-time model
checking

As for future work
Applying our methodology to a comprehensive set of case studies

References

[AIMOKO9] M. Alferez, A. Moreira, U. Kulesza, J. Araujo, R. Mateus, and V.
Amaral. Detecting feature interactions in spl requirements analysis models.
In FOSD, pages 117-123, 2009

[CIHe11] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic
model checking of software product lines. In ICSE, pages 321-330, 2011

[FIGh11] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient
probabilistic model checking. In ICSE, pages 341-350, 2011

Thanks!

5 |
- Questions?

