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Service-oriented Systems
About [Di Nitto et al. 2008]

Service-
= Software services separate oriented
= ownership, maintenance and operation System
= from use of software
—{_ {3
. | [
= Service users: no need to acquire, deploy and run
software S ]
= Access the functionality of software from remote B}[—‘
through service interface *
el
= Services take concept of ownership to extreme v
= Software is fully executed and managed by 3™ parties - D_@

= Cf. COTS: where “only” development, quality
assurance, and maintenance is under control of third
parties
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Service-oriented Systems
Need for Adaptation

= Highly dynamic changes due to
— 3 party services, multitude of service providers, ...
— evolution of requirements, user types, ...
— change in end-user devices, network connectivity, ...

= Difference from traditional
software systems
— Unprecedented level of change

— No guarantee that 37 party
service fulfils its contract (SLA)

— Hard to assess behaviour
of infrastructure (Internet)
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Service-oriented Systems
Need for Adaptation

S-Cube Service Life-Cycle Model

Identify .
Adaptation — J— Requilremc.ents
Need (Analyse) — Operation & P— Engineering

Management

(incl. Monitor) \\

Identlfy Design
Adaptation Adaptation
Strategy (PIan)

Deployment &

Enact Adaptatlon - Provisioning - Realization
(Execute) - -~
Run-time Design time

(,MAPE” loop)
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Types of Adaptation

Types of Adaptation (general differences)

* Reactive Adaptation

* Repair/compensate external failure
visible to the end-user

* Preventive Adaptation
e Alocal failure (deviation) occurs
- Will it lead to an external failure?

* |f “yes”: Repair/compensate local failure
(deviation) to prevent external failure

* Proactive Adaptation

— Is local failure /deviation imminent
(but did not occur)?

* If “ves”: Modify system before local
failure (deviation) actually occurs

A UJr0o
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Fail

Failure?

Key enabler:

Online Failure Prediction
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Need for Accuracy

Requirements on Online Failure Prediction

e Prediction must be efficient

 Time available for prediction
and repairs/changes is limited

e |f prediction is too slow, not enough time to adapt

2 :5 j %“/’:1 ,:\.,:,‘,;‘_/ . L g
s

e Prediction must be accurate

* Unnecessary adaptations can lead to

' :ﬁ‘&\

* higher costs (e.g., use of expensive alternatives)
* delays (possibly leaving less time to address real faults)

* follow-up failures (e.qg., if alternative service has severe bugs)

 Missed proactive adaptation opportunities diminish the benefit

of proactive adaptation
(e.g., because reactive compensation actions are needed)

LU0
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Measuring Accuracy

Contingency Table Metrics
(see [Salfner et al. 2010])

Actual Failure | Actual Non-
Failure
Predicted
True Pos. False Pos.
Failure
Predicted

Predicted

Response Time Actual
(Monitored)
Response Time

>

Response time
service S2

time
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Measuring Accuracy

Some Contingency Table Metrics (see [saifner et al. 2010])

Precision:

TP
P=TPIFP

How many of the
predicted failures were
actual failures?

Negative Predictive Value:

T'N
I'N+ FN

How many of the
predicted non-failures
were actual non-
failures?

DV =

Recall (True Positive Rate):
TP How many of the

r — actual failures have
been correctly
predicted as failures?

i ¥
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Specificity (True Negative Rate):
TN How many of the actual

S = non-failures have been

I'N+FP correctly predicted as

non-failures?
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Measuring Accuracy
Other Metrics

TP+ TN How many predictions were
~ TP+TN+ FP+FN corect?

e Actual failures usually are rare
- prediction that always predicts “non-failure” can achieve high a

Accuracy a

Prediction Error

* Does not reveal accuracy of prediction in terms of SLA violation (also see [Cavallo et al. 2010])

Small error, but wrong prediction of violation < Large error, but correct prediction of violation

e R o
£ o ¢
- U
[ I}
(7 )
s 3
a9
(]
- @)
T >
time

Caveat: Contingency table metrics influenced by the threshold value of SLA violation
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Experimental Assessment

Experimental Setup

e Prototypical implementation of different prediction techniques

e Simulation of example
service-oriented system
(100 runs, with 100 running
systems each)

e (Post-mortem) monitoring data
from real services
(2000 data points per service;
QoS = performance measured
each hour)
[Cavallo et al. 2010]

e Measuring contingency table
metrics (for S1 and S3)

* Predicted based on
”actual” execution of the SBA
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Experimental Assessment
Prediction Techniques

* Time Series

* Arithmetic average:

n
- 1
m¢t = — E Tt —q
n <
1=1

e Past data points: n=10

* Exponential smoothing:
ﬁlt:@'mt—l—l—(l—&)'ﬁlt—l
e Weight: =.3
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Experimental Assessment
Prediction Techniques

* Online Testing:

e Observation: Monitoring is “observational”/“passive”

- May not lead to “timely” coverage of service
(which thus might diminish predictions)

e QOur solution: PROSA [Sammodi et al. 2011]

e Systematically test services in parallel to normal use and operation
[Bertolino 2007, Hielscher et al. 2008]

* Approach: “Inverse” usage-based test of services

* If service has seldom been used in a given time period dedicated
online tests are performed to collect additional evidence for quality
of the service

* Feed testing and monitoring results into prediction model
(here: arithmetic average, n=1)

e Maximum 3 tests within 10 hours

LU0
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Experimental Assessment

Results

Prediction Models —

(“lots of
monitoring
data”)
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Future Directions
Experimental Observations

e Accuracy of prediction may depend on many factors, like

* Prediction model

* Caveat: Only “time series” predictors used in experiments
(alternatives: function approx., system models, classifiers, ...)

* (Caveat: Data set used might tweak observations
- we are currently working on more realistic benchmarks

e NB: Results do not seem to improve for ARIMA (cf. [Cavallo et al. 2010])

e Usage setting
 E.g., usage patterns impact on number of monitoring data available

* Prediction models may quickly become “obsolete” in a dynamic setting

e Time since last adaptation

* Prediction models may lead to low accuracy while being retrained

e Accuracy assessment is done “post-mortem”
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Future Directions
Solution Idea 1: Adaptive Prediction Models

e Example: Infrastructure load prediction (e.g., [Casolari & Colajanni 2009])

e Adaptive prediction model (considering the trend of the “load” in addition)

0.8

;
07t o
of A
-7
LAV

CPU utilization

0.3

e Open: Possible to apply to services /
service-oriented systems?
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Future Directions
Solution Idea 2: Online accuracy assessment

* Run-time computation of prediction error (e.g., [Leitner et al. 2011])

 Compare predictions with actual outcomes, i.e., difference between predicted
value and actual value

e But: Prediction error not enough to assess accuracy for proactive adaptation
(see above)

* Run-time determination of confidence intervals (e.g., [Dinda 2002, Metzger et
al. 2010])

* |In addition to point prediction determine range of prediction values with
confidence interval (e.g., 95%)

e Again: Same shortcoming as above

LU0
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Future Directions
Solution Idea 3: Contextualization of accuracy assessment

* End-to-end assessment
e Understand impact of predicted quality on end-2-end workflow (or parts thereof)
 Combine with existing techniques such as: machine learning, program analysis,
model checking, ...
e Quality of Experience
* Assess the perception of quality by the end-user (utility functions)

* E.g., 20% deviation might not even be perceived by end-user

e Cost Models

e Cost of violation may be smaller than penalty, so it may not be a not problem if
some of them are missed (small recall is ok)

e Cost of missed adaptation vs. cost of unnecessary adaptation should be taken into
account

e E.g., maybe an unnecessary adaptation is not costly / problematic

e Cost of applying prediction (e.g,. Online testing) vs. benefits

LU0
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Future Directions
Solution Idea 4: Future Internet [Metzger et al. 2011, Tselentis et al. 2009]

Even higher dynamicity of changes
- More challenges for prediction

But also: More data for prediction
- Opportunity for improved prediction techniques
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